Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems
نویسندگان
چکیده
INTRODUCTION For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. MATERIALS AND METHODS In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. RESULTS The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. DISCUSSION The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems.
منابع مشابه
Evaluation of Effect of Different Computed Tomography Scanning Protocols on Hounsfield Unit and Its Impact on Dose Calculation by Treatment Planning System
Introduction: In radiotherapy treatment planning system (TPS), basic input is the data from computed tomography (CT) scan, which takes into account the effect of inhomogeneities in dose calculations. Measurement of CT numbers may be affected by scanner-specific parameters. Therefore, it is important to verify the effect of different CT scanning protocols on Hounsfield unit (HU) and its impact o...
متن کاملInvestigating the effects of different kernels used for CT image reconstruction on dose distributions in treatment planning of kidney cancer radiotherapy
Introduction: The quality of CT images used for treatment planning of cancer patients is an important issue in accurate outlining of the tumor volume and organs at risk. Different kernels in CT scanner systems are available for improving the image quality. Applying these kernels on CT images will change the CT numbers and electron density of tissues, conse...
متن کاملExtracting Material Information from the CT Numbers by Artificial Neural Networks for Use in the Monte Carlo Simulations of Different Tissue Types in Brachytherapy
Background: The artificial neural networks (ANNs) are useful in solving nonlinear processes, without the need for mathematical models of the parameters. Since the relationship between the CT numbers and material compositions is not linear, ANN can be used for obtaining tissue density and composition.Objective: The aim of this study is to utilize ANN for determination of the composition and mass...
متن کاملBrachytherapy polymer gel dosimetry with xCT
ABSTRACTBackground: Polymer gels are an emerging new class of dosimeters which are being applied to the challenges of modern radiotherapy modalities. Research on gel dosimetry involves several scientific domains, one of which is the imaging techniques with which dose data is extracted from the dosimeters. In the current work, we present our preliminary results of investigating capability of X-r...
متن کاملThe calibration of CT Hounsfield units for radiotherapy treatment planning.
Computer tomographic (CT) scans are used to correct for tissue inhomogeneities in radiotherapy treatment planning. In order to guarantee a precise treatment, it is important to obtain the relationship between CT Hounsfield units and electron densities (or proton stopping powers for proton radiotherapy), which is the basic input for radiotherapy planning systems which consider tissue heterogenei...
متن کامل